Exact Solutions (Existence and Uniqueness) / Symmetries /
Classifications
- Schwarzschild K: Über das Gravitationsfeld einer Kugel aus
inkompressibler Flüssigkeit nach der Einsteinschen
Theorie, Sitz.-Ber. Preuß. Akad. Wiss., Berlin
(1916), 424 - 434 [in German]
English translation:
Preprint
physics/9905030
- Curzon H E J, Proc. Lond. Math. Soc. 23 (1924), 477
- Wahlquist H D: Phys. Rev. 172 (1968), 1291
- Boyer R H: Geodesic Killing Orbits and Bifurcate Killing
Horizons, Proc. R. Soc. Lond. A 311
(1969), 245
NB: Written posthumously by J Ehlers
and J L Stachel.
- Wainwright J: A Class of Algebraically Special Perfect Fluid
Space-Times, Commun. Math. Phys. 17
(1970), 42
- Ernst F J: J. Math. Phys. 17 (1976), 54
- Stephani H: A Note on Killing Tensors, Gen. Rel. Grav.
9 (1978), 789
- Allnut J A: A Petrov Type-III Perfect Fluid Solution of
Einstein's Equations, Gen. Rel. Grav. 13 (1981),
1017
NB: $(\mu+3p) < 0$; one spacelike KVF; shearing,
expanding, twist-free repeated PND; non-geodesic, shearing,
expanding, irrotational $u^{\mu}$; non-conformally flat spacelike
3-surfaces orthogonal to $u^{\mu}$.
- Friedrich H: On the Regular and the Asymptotic Characteristic
Initial Value Problem for
Einstein's Vacuum Field Equations,
Proc. R. Soc. Lond. A
375 (1981), 169
NB:
Employs NP spin-frame
formalism. Very technical. (+ -
- -).
Communicated by S W Hawking.
- Friedrich H: The Asymptotic Characteristic Initial Value
Problem for Einstein's Vacuum
Field Equations as an Initial
Value Problem for a
First-Order Quasilinear
Symmetric Hyperbolic System,
Proc. R. Soc. Lond. A
378 (1981), 401
NB: Employs NP spin-frame
formalism. Very
technical. (+ - - -).
Communicated by S W Hawking.
- Karlhede A, M A H MacCallum: On Determining the Isometry Group
of a Riemann Space,
Gen. Rel. Grav.
14 (1982),
673
- Herlt E, H Stephani: Algebraically Special, Shearfree,
Diverging, and Twisting
Einstein-Maxwell
Fields,
Class. Quantum
Grav. 1
(1984), 95
- Kramer D: A New Solution for a Rotating Perfect Fluid In
General Relativity,
Class. Quantum
Grav. 1
(1984),
L3
NB: Abelian
$G_{2}$, stationary
and axisymmetric,
rigidly rotating,
$(\rho+3p)=const$,
Petrov type D.
- Neugebauer G, E Herlt: Einstein-Maxwell Fields Inside and
Outside Rotating
Sources as
Minimal Surfaces,
Class. Quantum
Grav.
1 (1984), 695
- McIntosh C B G: Symmetries of Vacuum Type-N Metrics, Class. Quantum
Grav.
2
(1985), 87
- Bonnor W B, W Davidson: Petrov Type II Perfect Fluid
Spacetimes with Vorticity, Class. Quantum Grav. 2
(1985), 775
- Stephani H, E Herlt: Twisting Type-N Vacuum Solutions with Two
Non-Commuting Killing Vectors Do Exist, Class. Quantum Grav.
2 (1985), L63
NB: Comments on
McIntosh.
- Kitchingham D W: The Application of the Homogeneous Hilbert Problem
of Hauser and Ernst to Cosmological Models with Spatial
Axes of Symmetry, Class. Quantum Grav. 3 (1986), 133
- Garfinkle D, Q Tian: Spacetimes With Cosmological Constant And A
Conformal Killing Field Have Constant Curvature,
Class. Quantum Grav. 4 (1987), 137
NB: Results in either de Sitter or anti-de
Sitter, depending on sign of $\Lambda$.
- McIntosh C B G et al: Type II and III Twisting Vacuum Metrics
and Symmetries, Class. Quantum Grav. 4 (1987), 117
- Patra A C, D Roy: A New Solution For A Rotating Perfect Fluid
In General Relativity, Class. Quantum Grav. 4 (1987),
195
NB: Refers to Kramer (1984).
- Senovilla J M M: On Petrov Type-D Stationary Axisymmetric
Rigidly Rotating Perfect-Fluid Metrics, Class. Quantum Grav.
4 (1987), L115
- Stephani H: Some Perfect Fluid Solutions of Einstein's Field
Equations without Symmetries, Class. Quantum Grav. 4 (1987), 125
- Kramer D: , Class. Quantum Grav. 5 (1988), 393
- Kramer D: Two Charged Masses in Equilibrium,
Class. Quantum Grav. 5 (1988), 1435
NB: Electrostatic Einstein-Maxwell field.
- Castejón-Amenedo J, M A H MacCallum, V S Manko: On an
Axisymmetric Solution of the Vacuum Einstein Equations for a
Stationary Rotating Mass, Class. Quantum Grav. 6
(1989), L211
- Hall G S: The Global Extension of Local Symmetries in General
Relativity, Class. Quantum Grav. 6 (1989), 157
- Hoenselaers C, B G Schmidt: Exact Solutions for a Simple
Model of Radiation Damping, Class. Quantum Grav. 6 (1989), 867
- Stephani H, R Grosso: Perfect Fluids with 4-Velocity Spanned
by Two Commuting Killing Vectors, Class. Quantum Grav.
6 (1989), 1673
NB:
$\vec{u}=\left(\,\partial_{t}+\Omega\,\partial_{\varphi}\,\right)/
\sqrt{-H}$, differential rotation $\Omega$, relates to solutions
that are stationary and axisymmetric, required: the metric be
regular on the symmetry axis and there exists a closed surface with
$p=0$.
- Bohr H, K Buchner: Computer Simulations of Stationary
Cylindrical Solutions to Einstein's Equations for Perfect Fluids,
Class. Quantum Grav. 7 (1990), 771
NB: Metric regular on the $z$-axis; by
varying initial conditions, NO asymptotically flat spacetimes
were obtained.
- Barnes A, R R Rowlingson: Killing Vectors in Conformally Flat
Perfect Fluid Spacetimes, Class. Quantum Grav. 7 (1990), 1721
- Bonnor W B: The C-Metric in Bondi's Coordinates, Class. Quantum Grav. 7 (1990), L229
- Carminati J: Type D Perfect-Fluid Spacetimes with a Non-Null
Electromagnetic Field, Class. Quantum Grav. 7 (1990), 1543
- Chinea F J, L M González-Romero: Interior Gravitational
Field of a Stationary, Axially Symmetric Perfect Fluid in
Irrotational Motion, Class. Quantum Grav. 7 (1990), L99
- Coley A A, B O J Tupper: Spacetimes Admitting Inherting
Conformal Killing Vector Fields, Class. Quantum Grav.
7 (1990), 1961
- Garc\'{\i}a A D: Type D Divergenceless Charged Perfect Fluid
Solutions, Class. Quantum Grav. 7 (1990), 1299
- Gaffet B: The Einstein Equations with Two Commuting Killing
Vectors, Class. Quantum Grav. 7 (1990), 2017
- Hoenselaers C, Z Perjés: Multipole Moments Of
Axisymmetric Electrovacuum Spacetimes, Class. Quantum
Grav. 7 (1990), 1819
- Horský J, N V Mitskievitch: Generalised Kramer's Metric,
Class. Quantum Grav. 7 (1990), 1523
NB: Refers to Kramer (1988).
- Uggla C, K Rosquist, R T Jantzen: Geometrizing the Dynamics
of Bianchi Cosmology, Phys. Rev. D 42 (1990), 404
- Arianrhod R et al: Principal Null Directions of the Curzon
Metric, Class. Quantum Grav. 8 (1991), 1519
NB:
See Curzon (1924) and end of last page.
- Coley A A: Fluid Spacetimes Admitting a Conformal Killing
Vector Parallel To The Velocity Vector, Class.
Quantum Grav. 8 (1991), 955
- Coley A A, B O J Tupper: Fluid Spacetimes Admitting
Covariantly Constant Vectors and Tensors, Gen. Rel. Grav. 23
(1991), 1113
- Fackerell E D, R P Kerr: Einstein Vacuum Field Equations with
a Simple Non-Null Killing Vector, Gen. Rel. Grav.
23 (1991), 861
NB: One spacelike KVF.
- Hewitt C G: Algebraic Invariant Curves in Cosmological
Dynamical Systems and Exact Solutions, Gen. Rel. Grav.
23 (1991), 1363
- Bonnor W B: Physical Interpretation of Vacuum Solutions of
Einstein's Equations. Part I. Time-Independent Solutions,
Gen. Rel. Grav. 24 (1992), 551
- Carminati J, F I Cooperstock: Herlt Metrics and
Gravitational-Electrostatic Balance in General Relativity,
Gen. Rel. Grav. 24 (1992), 881
- Castejón-Amenedo J, A A Coley: Exact Solutions with
Conformal Killing Vector Fields, Class. Quantum Grav.
9 (1992), 2203
NB:
Purpose is to formalise the role of the conformal group $C_{r}$ in
general relativity analoguous to the isometry group $G_{r}$.
- Chinea F J et al: Singularity-Free Space-Times,
Phys. Rev. D 45
(1992), 481
NB: Refers to Senovilla J M M,
Phys. Rev. Lett. 64 (1990), 2219.
- Koutras A: Killing Tensors from Conformal Killing Vectors,
Class. Quantum Grav. 9 (1992), 1573
- Kyriakopoulos E: Interior Axisymmetric Stationary Perfect
Fluid Solution of Einstein's Equations, Class. Quantum
Grav. 9 (1992), 217
NB: $\gamma=\frac{2}{3}$.
- Ludwig G, Y B Yu: Type N Twisting Vacuum Gravitational
Fields, Gen. Rel. Grav. 24 (1992), 93
NB: Relates to the Hauser metric.
- Manko V S: The Exterior Gravitational Field of a Static and
Stationary Mass with an Arbitrary Set of Multipole Moments,
Gen. Rel. Grav.
24 (1992), 35
NB: Exact asymptotically flat vacuum
solution.
- Manko V S, N R Sibgatullin: Kerr Metric Endowed with Magnetic
Dipole Moment, Class. Quantum Grav. 9 (1992), L87
- Senovilla J M M: New Family of Stationary and Axisymmetric
Perfect-Fluid Solutions, Class. Quantum Grav. 9
(1992), L167
NB: Model with differential rotation.
- Sklavenites D: Stationary and Static Axisymmetric Perfect
Fluid Solutions, Gen. Rel. Grav. 24 (1992), 935
- Wolf T, G Neugebauer: About the Non-Existence of Perfect
Fluid Bodies with the Kerr Metric Outside, Class.
Quantum Grav. 9 (1992), L37
- Aguirregabiria J M et al: Exterior Gravitational Field of a
Magnetized Spinning Source Possessing an Arbitrary Mass-Quadrupole
Moment, Phys. Rev. D 48 (1993), 622
NB: Exact
asymptotically flat solution of Einstein-Maxwell equations, model
for an axisymmetric neutron star (Manko/Sibgatullin involved).
- Ellis G F R: Exact and Inexact Solutions of the Einstein
Field Equations, in The Renaissance of General Relativity and
Cosmology, Eds. G Ellis, A Lanza, J Miller, (Cambridge: Cambridge
University Press, 1993)
- Kind S, J Ehlers: Initial-Boundary Value Problem for the
Spherically Symmetric Einstein Equations for a Perfect Fluid,
Class. Quantum Grav. 10 (1993), 2123
NB: Quite technical.
- Kind S, J Ehlers, B G Schmidt: Relativistic Stellar
Oscillations Treated as an Initial Value Problem,
Class. Quantum Grav. 10 (1993), 2137
NB: Linearised perturbations of a star in hydrostatic
equilibrium. Quite technical.
- Mars M, J M M Senovilla: Axial Symmetry and Conformal Killing
Vectors, Class. Quantum Grav. 10 (1993), 1633
- McLenaghan R G, N Van den Bergh: Spacetimes Admitting Killing
2-Spinors, Class. Quantum Grav. 10 (1993), 2179
- Rácz I: Maxwell Fields in Spacetimes Admitting Non-Null
Killing Vectors, Class. Quantum Grav. 10 (1993), L167
NB:
$\mbox{\pounds}_{\vec{\xi}}\, F_{\mu\nu} = 0$.
- Stephani H: A Note on the Solutions of the Diverging,
Twisting Type N Vacuum Field Equations, Class.
Quantum Grav. 10 (1993),
2187
NB: ONE reference: KSMH `80.
- Sussman R A: New Solutions for Heat Conducting Fluids with a
Normal Shear-Free Flow, Class. Quantum Grav. 10
(1993), 2675
NB: $0 = \sigma
= \omega$, non-zero bulk viscous pressure and energy current
density; solutions of Petrov type D and $0$. "...reducing to the
`Stephani Universe' as heat conduction vanishes."
- Arianrhod R, A W-C Lun, C B G McIntosh, Z Perjés:
Magnetic Curvatures, Class. Quantum Grav. 11 (1994), 2331
- Bonnor W B, J B Griffiths, M A H MacCallum: Physical
Interpretation of Einstein's Equations. Part II. Time-Dependent
Solutions, Gen. Rel. Grav. 26 (1994), 687
- Coley A A, D McManus: On Spacetimes Admitting Shear-Free,
Irrotational, Geodesic Time-like Congruences, Class. Quantum
Grav. 11 (1994), 1261
NB: General $T_{ab}$.
- Finley III J D, J F Plebański, M Przanowski: Third-Order
ODEs for Twisting Type-N Vacuum Solutions, Class.
Quantum Grav. 11 (1994), 157
- Garc\'{\i}a A: A New Stationary Axisymmetric Perfect Fluid
Type D Solution With Differential Rotation, Class. Quantum
Grav. 11 (1994),
L45
NB: Abelian $G_{2}$, $\partial_{t}$, $\partial_{\phi}$, refers
to Senovilla ibid 1992, $u^{\mu}=A(x)\,(\,\delta^{\mu}\!_{t}
+\omega(x)\,\delta^{\mu}\!_{\phi}\,)$.
- McIntosh C B G, A Arianrhod, S Wade, C A Honselaers: Electric
and Magnetic Weyl Tensors: Classification and Analysis, Class.
Quantum Grav. 11 (1994), 1555
- Neugebauer G, R Meinel: General Relativistic Gravitational
Field of a Rigidly Rotating Disk of Dust: Axis Potential, Disk
Metric, and Surface Mass Density, Phys. Rev. Lett. 73
(1994), 2166
- Neugebauer G, R Meinel: General Relativistic Gravitational
Field of a Rigidly Rotating Disk of Dust: Solutions in Terms of
Ultraelliptic Functions, Phys. Rev. Lett. 75 (1995), 3046
- Meinel R, G Neugebauer: Asymptotically Flat Solutions to the
Ernst Equation with Reflection Symmetry, Class. Quantum
Grav. 12 (1995), 2045
NB: Overlaps with P Kordas,
Class. Quantum Grav. 12 (1995), 2037.
- Uggla C, R T Jantzen, K Rosquist: Exact Hypersurface-Homogeneous
Solutions in Cosmology and Astrophysics, Phys. Rev. D
51 (1995), 5522.
Also: Preprint
gr-qc/9503061.
- Finley III J D, J F Plebański, M Przanowski: An Iterative
Approach to Twisting and Diverging, Type-N, Vacuum Einstein
Equations: A (Third-Order) Resolution of Stephani's `Paradox',
Class. Quantum Grav. 14 (1997), 489
NB: Ref. to Stephani H, Class. Quantum Grav. 10 (1993),
2187.
- Claudel C M, K P Newman: The Cauchy Problem for Quasi-Linear
Hyperbolic Evolution Problems with a Singularity in the Time,
Proc. R. Soc. Lond. A
454 (1998), 1073
NB: Very technical.
- Christodoulou D: On the Global Initial Value Problem and the
Issue of Singularities (Review), Class. Quantum Grav.
16 (1999), A23
NB: Einstein field equations in
vacuum (asymptoticaly flat cases) and with massless scalar field.
- Friedrich H, G Nagy: The Initial Boundary Value Problem for
Einstein's Vacuum Field Equation, Commun. Math. Phys.
201 (1999), 619
NB: Very technical. (+ - - -).
Communicated by H Nicolai.
- Klainerman S, F Nicolò: On Local and Global Aspects of the
Cauchy Problem in General Relativity (Topical Review),
Class. Quantum Grav. 16 (1999), R73
NB: Einstein field equations in vacuum (asymptoticaly flat cases).
Very technical.
- Friedrich H, A D Rendall: The Cauchy Problem for the Einstein
Equations, in Einstein's Field Equations and their Physical
Interpretation, ed. B G Schmidt, (Berlin: Springer, 2000), 127.
Also: Preprint
gr-qc/0002074,
AEI-2000-012.
- Rendall A D:
Local and Global Existence Theorems for the
Einstein Equations, Max-Planck-Gesellschaft Living Reviews
Series, No. 2000-1
Selected References
Last revision: Tue, 15-8-2000 (This page is under construction)